

Laser beam power converters based on photo-thermionic emission for future lunar exploration

DiaTHEMA

Daniele M. Trucchi

Institute for Structure of Matter (ISM) of the Italian National Research Council (CNR)

Applications

• Laser beaming is ideal when sunlight is not available: permanently shadowed regions PSR and South Pole of the Moon

- Exploration of PSR and South Pole is primarily important for rough materials and water
 - Other planetary explorations (e.g., Mars) can exploit the laser beaming
- Small robotic systems such as rovers, drones, cubesats can be power-supplied by laser beaming

- Wireless power transfer is the ideal power technology when fixed infrastructures are not feasible: case of satellites' power supply
- Laser beams are the case of electromagnetic radiation (e.g., micro- and mm-wave) with the highest transferred power density: smaller receivers and lower weight

Needs & Available technologies

- Thermally resistant technology -> Operations from -100 °C (lunar night) to +200 °C (day)
- Compact technology -> Manage high radiation power densities > 50 W/cm²
- Lightweight technology -> Solid-state converter
- Vacuum conditions -> from 10⁻¹² mbar (night) to 10⁻¹⁰ mbar (day)

Available technologies:

- Radioactive Thermoelectric Generators
 - ✓ Long lifetime
 - ✓ Thermally resistant
 - ✓ Temperature independent
 - Moderate compactness
 - Low efficiency <7%
 - Use of radioactive sources (safety)
 - Moderate lightweight (screening of radioactive source)

- Concentrated photovoltaic cells combined with laser beaming
 - ✓ Efficiency > 40%
 - ✓ Compact
 - ✓ Lightweight
 - Extremely expensive
 - Efficiency limitations under high
 - temperature conditions
 - Efficiency limitations at high fluxes > 30 W/cm²
- Rome, November 15th, 2022 LEE 2022

High-Temperature Solar Cells (PETE Devices)

Trucchi

Daniele M.

PETE Cathodes

III-V Semiconductors

Advantages:

- Proper bandgap for absorption and photocarrier generation (about 1.8 eV)
 - High electron diffusion lengths

Disadvantages:

- High electron affinity-> Necessity of coatings for "work-functionengineering"
- Instability at high-temperature of the crystal lattice and of the emitting coating

Diamond

Advantages:

- Low "native" work function caused by NEA conditions (surface hydrogen termination)*
- Wide range of operating temperature (<750 °C)
- High thermal stability
- High robustness

Disadvantages:

• Wide bandgap (5.47 eV @ RT)

Defect Engineering

Bandgap Engineering

DE

*D.M. Trucchi et al., Solar Thermionic-Thermoelectric Generator (ST²G): concept, material and prototype demonstration, Adv. Energy Mater. 8, (2018) 1802310

Rome, November 15th, 2022 – LEE 2022

Daniele M. Trucchi daniele.trucchi@ism.cnr.it

Efficiency & Structure

- Simple device structure
- Thermoelectric generator (TEG) is optional
- Additional advantage on the Moon: no need for vacuum case thanks to the absence of atmosphere

- Two possible configurations: PETEC or PETEC+TEG
- Both configurations can be highly efficient
- PETEC is more efficient than photovoltaic cells under comparable conditions since it uses also excess thermal energy

Defect-Engineered Broadband-Response Diamond PETE Cath

A. Bellucci et al., **Defect Engineering of Diamond Cathodes for High Temperature Solar Cells**, 2015 IEE 15th International Conference on Environment and Electrical Engineering Proceedings, (2015) 1616-1619.

Trucchi -

Daniele M.

Selective-Response Heterostructure Diamond PETE Cathode

Daniele M. Trucchi daniele.trucchi@ism.cnr.it

Semicondu	Bandgap	Operati	Meltin	Thermal
ctor	energy,	ng	g point	expansion
	direct (D) or	wavelen	(°C)	coefficient
	indirect (I)	gth (nm)		(K ⁻¹)
Ge	0.67 eV, I	< 1850	938	5.9×10^{-6}
Si	1.12 eV, I	< 1107	1414	2.6×10^{-6}
InP	1.35 eV, D	< 918	1062	4.6×10^{-6}
CdTe	1.58 eV, D	< 784	1041	5.9×10^{-6}
$3C-SiC(\beta)$	2.36 eV, D	< 525	2830	2.8×10^{-6}
GaN	3.4 eV, D	< 364	> 1600	4.5×10^{-6}

A. Bellucci et al., Optimization of Black Diamond Films for Solar Energy Conversion, Appl. Surf. Sci. 380 (2016) 8-11 M. Mastellone et al., "Deep-Subwavelength 2D Periodic Surface Nanostructures on Diamond by Double-Pulse Femtosecond Laser Irradiation" Nano Letters 21 (2021) 4477.

BLACK DIAMOND – Optical Properties

M. Girolami et al., Optical characterization of double-nanotextured black diamond films, Carbon 138

Wavelength (nm)

(2018) 384-389

daniele.trucchi@ism.cnr.it

Trucchi

Daniele M.

BLACK DIAMOND – Photoelectronic

Spectral photoconductivity measurements have been performed to quantify the photogeneration capability of useful charge carriers

daniele.trucchi@ism.cnr.it

Trucchi -

Daniele M.

Sub-bandgap QE reaches values two orders of magnitude higher than pristine sample for the medium treated sample (three orders for the 2D periodic texturing)

This indicates that a too high defect density has been introduced. But do defects act as traps or recombination centers?

The photosensitivity has a maximum in correspondence of an intermediate value of accumulated fluence: some defects act as traps for one carrier type thus increasing the carriers' lifetime

P. Calvani et al., **Black Diamond for Solar Energy Conversion**, Carbon 105 (2016) 401-407 M. Girolami et al., Transport properties of photogenerated charge carriers in black diamond films, Ceramics International 45 (2019) 9544

PETE Cathode / Emitting layer

Trucchi

ž

Daniele

Active Cooling

PETE Cathode / Demonstration of Proof-of-Concept

D.M. Trucchi et al., Demonstration of photon-enhanced thermionic energy conversion by black-diamond cathodes, in preparation

Trucchi

Daniele M.

PETE Cathode / Demonstration of Proof-of-Concept

Trucchi

Daniele M.

Our PETEC technology

1 µm ⊢_____

High temperature solar cells adapted to laser beam operating with photon-enhanced thermionic energy conversion (PETEC) can satisfy all the conditions:

- Manage high radiation power densities up to 200 W/cm²
- Operations from -200 to +500 °C
- Lightweight technology -> About 2 g/cm² (excluding the stainless-steel enclosure, necessary only for lunar powder)

Conclusion & Perspectives

- ✓ BLACK DIAMOND can be defined as a new defect-engineered nanotextured material, characterized by the excellent physical properties of diamond and enhanced interaction with solar light, lithography steps are not necessary, and able to absorb about 99% of sunlight
- ✓ BLACK DIAMOND is the KEY ENABLING MATERIAL of an ADVANCED TECHNOLOGY COMBINATION for developing EFFICIENT HIGH-TEMPERATURE SOLAR CELLS & LASER BEAMING RECEIVERS (in a vacuum environment on the Moon)
- PETE concept was demonstrated for the FIRST TIME with a TESTING under HIGHLY-CONCENTRATED SUNLIGHT

Perspectives

- > Extension of the recipes to polycrystalline diamond
- Extension to heterostructured cathodes
- Reduction of diamond plate thickness
- Extension to other wide bandgap semiconductors
- The fs-laser based techniques can be exported for developing optoelectronic devices with high integration capability

