
Marco Angelucci, Luisa Spallino, Roberto Cimino

Low Energy Electrons relevance in 
accelerator technology 



15/11/2022 Marco Angelucci - LEE2022 1

Introduction

sawtooth
surface finishing

LASE-Cu

cooling channels

perforated 
baffles

FCC-hh BSLHC BS
Ø Low temperature

(LHC beam screen T~5-20 K)

Ø UHV (P <10-11 mbar)

Ø Different Surface characteristics



15/11/2022 Marco Angelucci - LEE2022 2

Generation of electrons inside 
vacuum chamber

Residual Gas ionization Phoelectrons from 
synchrotron radiation

Desorption from losses on the wall

Introduction



15/11/2022 Marco Angelucci - LEE2022 3

Generation of electrons inside 
vacuum chamber

1. Interaction of primary electrons with the beam
2. Acceleration of primary electrons
3. Production of Secondary electrons when hit the wall

Introduction
Residual Gas ionization Phoelectrons from 

synchrotron radiation
Desorption from losses on the wall



15/11/2022 Marco Angelucci - LEE2022 4

Generation of electrons inside 
vacuum chamber

1. Interaction of primary electrons with the beam
2. Acceleration of primary electrons
3. Production of Secondary electrons when hit the wall

Introduction

Electrons multiplication Electron Cloud

Residual Gas ionization Phoelectrons from 
synchrotron radiation

Desorption from losses on the wall
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The presence of an e-cloud inside an accelerator ring is revealed by several typical signatures

ü Fast pressure rise, outgassing
ü Additional heat load (LHC has cold Dipoles)
ü Baseline shift of the pick-up electrode signal
ü Tune shift along the bunch train
ü Coherent instability

o Single bunch effect affecting the last bunches of a train
o Coupled bunch effect

ü Beam size blow-up and emittance growth
ü Luminosity loss in colliders
ü Energy loss measured through the synchronous phase shift
ü Active monitoring: signal on dedicated electron detectors (e.g. strip monitors) and retarding 

field analyzers
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Ø Mitigation of electron emission from surface (SEY<1)

Ø Understanding the variation of electron emission under extreme condition

Ø Accurate prediction of SEY to simulate the operate conditions
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Introduction

Ø Mitigation of electron emission from surface (SEY<1)

Ø Understanding the variation of electron emission under extreme condition

Ø Accurate prediction of SEY to simulate the operate conditions

Ø Engineering new materials/surface

Ø Accurate studies of SEY and its correlation with surface properties 

Ø Develop more accurate analytical method 



Outline
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• Difference between “As Received” and atomically Clean Metals

SEY of Metal surfaces

• Morphology
• Defects
• Chemical state variations (interactions with photons and electrons)

SEY variation induced by Surface modifications

• Coatings
• Contaminants (Low Temperature)

SEY variation induced by Overlayers

• Correlation between SEY and surface properties

SEY and EDC



Introduction

15/11/2022 Marco Angelucci - LEE2022 9

Three-step process:

• Production of SE at a depth z

• Transport of the SE toward the surface

• Emission of SE across the surface barrier

Secondary Electron Emission Incident electrons 
current (Ip) Emitted electrons 

current (Iout)

Faraday cup

Sample



Experimental stations at XUV MaSSLab - INFN

• HE Chamber:
• XPS set-up (Al and Ag 

monocromatic and Al and 
Mg nonmonocromatic
sources)

• Electron gun and flood 
gun

• Quadrupole Mass 
Spectrometer
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R. Cimino & T. Demma, Int. J. Mod. Phys. A (2014)

Surface conditions
influence SEY measurements

Energy Distribution Curve (EDC) of the electrons 
produced by a 112 eV primary energy electron beam 

impinging on a Cu technical surface

Introduction
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Three-step process:

• Production of SE at a depth z

• Transport of the SE toward the surface

• Emission of SE across the surface barrier

Secondary Electron Emission
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Cimino et al., PRL 93 (2004)
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• Difference between “As Received” and atomically Clean Metals

SEY of Metal surfaces

• Morphology
• Defects
• Chemical state variations (interactions with photons and electrons)

SEY variation induced by Surface modifications

• Coatings
• Contaminants (Low Temperature)

SEY variation induced by Overlayers

• Correlation between SEY and surface properties

SEY and EDC



Differences between “As Received” and Atomically Clean Metals

SEY OF METAL SURFACES
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AIP Advances 7, 115203 (2017)
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SEY OF METAL SURFACES
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Differences between “As Received” and Atomically Clean Metals



High-Energy SEY dependence

Contaminants (as received) Materials (clean)

General High SEY • Lower SEY
• Characteristic Curves

SEY OF METAL SURFACES
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Differences between “As Received” and Atomically Clean Metals
in the Low-Energy range

Evaluation of 
Work Function

General Behaviour 
in all clean metals

SEY OF METAL SURFACES
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• Difference between “As Received” and atomically Clean Metals

SEY of Metal surfaces

• Morphology
• Defects
• Chemical state variations (interactions with photons and electrons)

SEY variation induced by Surface modifications

• Coatings
• Contaminants (Low Temperature)

SEY variation induced by Overlayers

• Correlation between SEY and surface properties

SEY and EDC
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R. Valizadeh et al. , Appl. Phys. Lett. (2014)

Engineering the surface morphology

SEY VARIATION INDUCED BY SURFACE MODIFICATIONS
(MORPHOLOGY)

Morphological
Changes
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R. Cimino et al. PR ST (2015)



SEY VARIATION INDUCED BY SURFACE MODIFICATIONS
(DEFECTS)

Structural modification
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Ar+ Sputtering

Modification of surface

L.A. Gonzalez et al., AIP Adv. 6 (2016) 095117 



R. Larciprete et al., Appl. Surf. Sci. (2015)

Modification of surface

Amorphous C-coating 

SEY VARIATION INDUCED BY SURFACE MODIFICATIONS
(CHEMICAL MODIFICATION)

Chemical modification
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ultra high vacuum
RF magnetron sputtering 50W p(Ar) 6x10-2 mbar 
a-C (~ 20 nm)/poly Cu



R. Larciprete et al., Appl. Surf. Sci. (2015)

Modification of surface

Amorphous C-coating 

Thermal graphitization of thin amorphous
C layers deposited by magnetron
sputtering on Cu substrates

SEY VARIATION INDUCED BY SURFACE MODIFICATIONS
(CHEMICAL MODIFICATION)

Chemical modification
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R. Cimino et al., Phys. Rev. Lett. (2012)

e-

sp3 à sp2 carbon surface contamination conversion

• SEY depends on the 
surface chemical state

Copper
Chemical variation induced by electron irradiation
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SEY VARIATION INDUCED BY SURFACE MODIFICATIONS
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ST. ST.

Chemical variation induced by electron irradiation
SEY VARIATION INDUCED BY SURFACE MODIFICATIONS
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• The As received St. St. shows some C 
in the Bulk + The typical C in sp3 form.

• The Semi scrubbed St. St. shows some 
C in the bulk + most C already in sp2

form.

• The fully scrubbed St. St. shows some 
C in the bulk+ most C already in sp2

form. Identical to the Semi scrubbed

• The St. St. shows that C is in the 
Bulk.

• The HOPG Graphite shows the C in sp2 form as 
a reference.
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Chemical variation induced by electron irradiation

ST. ST.

SEY VARIATION INDUCED BY SURFACE MODIFICATIONS
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• Difference between “As Received” and atomically Clean Metals

SEY of Metal surfaces

• Morphology
• Defects
• Chemical state variations (interactions with photons and electrons)

SEY variation induced by Surface modifications

• Coatings
• Contaminants (Low Temperature)

SEY variation induced by Overlayers

• Correlation between SEY and surface properties

SEY and EDC



M. Angelucci et. al; Phys. Rev. Research Rapid Comm. 2, 032030(R) (2020)
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Secondary Electron Yield Reduction
Carbon minimum thickness
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e-beam evaporation from 
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Induced SEY variation by external contaminants 
Sub-Monolayer Contaminations

• Strong Variations
(SEY @10eV from 0.05 to 0.25)
• New characteristic structures

Low-Energy Range

• Low Variations 
(SEY Max from 1.4 to 1.3)

• Variation Dependence on Gas 
contaminant
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Secondary Electron Yield Variations 
at Cryogenic Temperatures
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AIP Advances 7, 115203 (2017)



Sub-Monolayer Contaminations

High-Energy Range
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(SEY @10eV from 0.05 to 0.25)
• New characteristic structures

Low-Energy Range

• Low Variations 
(SEY Max from 1.4 to 1.3)

• Variation Dependence on Gas 
contaminant (?)

Induced SEY variation by external contaminants 
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AIP Advances 7, 115203 (2017)

Secondary Electron Yield Variations 
at Cryogenic Temperatures



Adsorption process of Carbon Monoxide on Cu sample at 10K
General behaviour Low-Energy Evolution
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• SEY @ 900 eV decreases during 
adsorption from 1.4 to 1.1

• Formation of CO Thick Film (TF)
• Characteristic peak of TF at 65 eV

• Characteristic peaks at 
different low energies

• Formation of CO Single Layer 
(SL)

Secondary Electron Yield Variations 
at Cryogenic Temperatures



Outline
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• Difference between “As Received” and atomically Clean Metals

SEY of Metal surfaces

• Morphology
• Defects
• Chemical state variations (interactions with photons and electrons)

SEY variation induced by Surface modifications

• Coatings
• Contaminants (Low Temperature)

SEY variation induced by Overlayers

• Correlation between SEY and surface properties

SEY and EDC
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Cimino et al., PRL 93 (2004)



• By normalizing to 1 spectra taken with Ep -
Ebias < Wf and than plotting together all EDC of 
clean oriented HOPG
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HOPG
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HOPG



15/11/2022 Marco Angelucci - LEE2022 37

• Each system has a different SEY depending on the chemistry and morphology
• Overlayers plays a crucial role
• The overlayer thickness can induce significant variation in SEY

• Contaminant Layer thickness could be responsible of the different sectors 
behaviour in accelerators 

Conclusions



Conclusions
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• Studies of different systems and material
• Studies of chemistry on the surface
• Evaluation of physical properties

• Important input for 
computational methods
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Measure of Secondary Electron Yield
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Advantages:

• Gun close to sample.
• Reduce noise for low current 

measurements (i.e. insulators)
• LE-SEY accessible

Disadvantages

• Gun need to be very stable (takes 
time)

• More work (2 separate runs)

Faraday

=
Iin- ISam
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Method 2
Direct measure of Iout

Measure of Secondary Electron Yield
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SEY Variation
ST. ST.Chemical variation induced by electron irradiation
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Three-step process:

• Production of SE at a depth z

• Transport of the SE toward the surface

• Emission of SE across the surface barrier

• SEY electrons are produced 

within a semi-sphere of about 

few nm radius

Secondary Electron emission

St. St.Chemical variation induced by electron irradiation
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SEY Variation



M. Angelucci et. al; Phys. Rev. Research Rapid comm. 2, 032030(R) (2020)

Secondary Electron Yield Reduction
Carbon minimum thickness
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Secondary Electron Yield Reduction
Carbon minimum thickness



REMAINING QUESTION: Such Surface sensitivity depends on a reduced MFP than known 
so far? 

Measure Angle integrated
EDC (D~ 1.3 eV) with LEED
Optics (Omicron) in Auger
Mode with a modified
electronics allowing to
maintain the e-gun in LEED
condition.
(necessary to go to LE)
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Plotting all the data
normalizing to UNITY the
intensity of the EDC @ Ep<
Wf
or
Integrating the curves:
(when Ep <50 eV)
Ø 0 to EP – D (True Secondary)
Ø EP – D to EP + D (Elastically Back.)
(when Ep > 50 eV)
Ø 0 to 50 eV (True Secondary)
Ø 50 eV to EP – D (Rediffused)
Ø EP – D to EP + D (Elastically Back.)

D
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REMAINING QUESTION: Such Surface sensitivity depends on a reduced MFP than known 
so far? 

Plotting all the data
normalizing to UNITY the
intensity of the EDC
@ Ep – EBIAS< Wf:

It is clear that the SEY
structures are oscillations
in the elastically
backscattered components
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REMAINING QUESTION: Such Surface sensitivity depends on a reduced MFP than known 
so far? 

Plotting all the data
normalizing to UNITY the
intensity of the EDC
@ Ep – EBIAS< Wf:

It is clear that the SEY
structures are oscillations
in the elastically
backscattered components
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REMAINING QUESTION: Such Surface sensitivity depends on a reduced MFP than known 
so far? 

Integrating the curves:
(when Ep <50 eV)

Ø 0 to EP – D (True Secondary)
Ø EP – D to EP + D (Elastically Back.)

(when Ep > 50 eV)
Ø 0 to 50 eV (True Secondary)
Ø 50 eV to EP – D (Rediffused)
Ø EP – D to EP + D (Elastically Back.)
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General Trend: Ar on poly-Cu

SL Ar ML Ar

Wf Difference!

Ar monolayer Ar multilayer
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