

Low Energy Electrons relevance in accelerator technology

Marco Angelucci, Luisa Spallino, Roberto Cimino

LEE2022 A brainstorming meeting on relevance of Low Energy Electrons in aerospace (Tuesday, November 15th 2022) Organized by Stefano lacobucci & Giovanni Stefani (ISM-CNR)

- **(LHC beam screen T~5-20 K)**
- \triangleright UHV (P < 10⁻¹¹ mbar)
- Ø **Different Surface characteristics**

Electrons multiplication Electron Cloud

The presence of an e-cloud inside an accelerator ring is revealed by several **typical signatures**

- \checkmark Fast pressure rise, outgassing
- \checkmark Additional heat load (LHC has cold Dipoles)
- \checkmark Baseline shift of the pick-up electrode signal
- \checkmark Tune shift along the bunch train
- \checkmark Coherent instability
	- Single bunch effect affecting the last bunches of a train
	- o Coupled bunch effect
- \checkmark Beam size blow-up and emittance growth
- \checkmark Luminosity loss in colliders
- \checkmark Energy loss measured through the synchronous phase shift
- \checkmark Active monitoring: signal on dedicated electron detectors (e.g. strip monitors) and retarding field analyzers

- Ø **Mitigation of electron emission from surface (SEY<1)**
- Ø **Understanding the variation of electron emission under extreme condition**
	- Ø **Accurate prediction of SEY to simulate the operate conditions**

Ø **Engineering new materials/surface**

Ø **Accurate studies of SEY and its correlation with surface properties**

Ø **Develop more accurate analytical method**

Outline

SEY of Metal surfaces

• Difference between "As Received" and atomically Clean Metals

SEY variation induced by Surface modifications

- Morphology
- Defects
- Chemical state variations (interactions with photons and electrons)

SEY variation induced by Overlayers

- Coatings
- Contaminants (Low Temperature)

SEY and EDC

• Correlation between SEY and surface properties

• Emission of SE across the surface barrier

Experimental stations at XUV MaSSLab - INFN

• **HE Chamber:**

- XPS set-up (Al and Ag monocromatic and Al and Mg nonmonocromatic sources)
- Electron gun and flood gun
- Quadrupole Mass Spectrometer

Surface conditions influence SEY measurements

R. Cimino & T. Demma, Int. J. Mod. Phys. A (2014)

Energy Distribution Curve (EDC) of the electrons produced by a 112 eV primary energy electron beam impinging on a Cu technical surface

Energy Distribution Curves at different Primary Energy

Energy Distribution Curves at different Primary Energy

40

Outline

SEY of Metal surfaces

• Difference between "As Received" and atomically Clean Metals

SEY variation induced by Surface modifications

- Morphology
- Defects
- Chemical state variations (interactions with photons and electrons)

SEY variation induced by Overlayers

- Coatings
- Contaminants (Low Temperature)

SEY and EDC

• Correlation between SEY and surface properties

Differences between "As Received" and Atomically Clean Metals

AIP Advances 7, 115203 (2017)

Differences between "As Received" and Atomically Clean Metals

Differences between "As Received" and Atomically Clean Metals in the Low-Energy range

AIP Advances 7, 115203 (2017)

Outline

SEY of Metal surfaces

• Difference between "As Received" and atomically Clean Metals

SEY variation induced by Surface modifications

- Morphology
- Defects
- Chemical state variations (interactions with photons and electrons)

SEY variation induced by Overlayers

- Coatings
- Contaminants (Low Temperature)

SEY and EDC

• Correlation between SEY and surface properties

SEY VARIATION INDUCED BY SURFACE MODIFICATIONS (MORPHOLOGY)

Engineering the surface morphology

SEY VARIATION INDUCED BY SURFACE MODIFICATIONS (DEFECTS)

Modification of surface

Structural modification

Ar+ Sputtering

L.A. Gonzalez et al., AIP Adv. 6 (2016) 095117

15/11/2022 Marco Angelucci - LEE2022 22

SEY VARIATION INDUCED BY SURFACE MODIFICATIONS (CHEMICAL MODIFICATION)

Modification of surface

Chemical modification

R. Larciprete et al., Appl. Surf. Sci. (2015)

Amorphous C-coating

ultra high vacuum RF magnetron sputtering 50W p(Ar) 6x10-2 mbar a-C (\sim 20 nm)/poly Cu

SEY VARIATION INDUCED BY SURFACE MODIFICATIONS (CHEMICAL MODIFICATION)

Modification of surface

Chemical modification

Amorphous C-coating

Thermal graphitization of thin amorphous C layers deposited by magnetron sputtering on Cu substrates

R. Larciprete et al., Appl. Surf. Sci. (2015)

SEY VARIATION INDUCED BY SURFACE MODIFICATIONS

INFN

Chemical variation induced by electron irradiation

SEY VARIATION INDUCED BY SURFACE MODIFICATIONS

Chemical variation induced by electron irradiation

INFN

SEY VARIATION INDUCED BY SURFACE MODIFICATIONS

NFN

Chemical variation induced by electron irradiation

Outline

SEY of Metal surfaces

• Difference between "As Received" and atomically Clean Metals

SEY variation induced by Surface modifications

- Morphology
- Defects
- Chemical state variations (interactions with photons and electrons)

SEY variation induced by Overlayers

- Coatings
- Contaminants (Low Temperature)

SEY and EDC

• Correlation between SEY and surface properties

Secondary Electron Yield Reduction

Fundamental information for coating engineering

M. Angelucci et. al; Phys. Rev. Research Rapid Comm. 2, 032030(R) (2020)

1000 800 600 400 200 0

Binding Energy (eV)

15/11/2022 Marco Angelucci - LEE2022 29

NFN

Secondary Electron Yield Variations at Cryogenic Temperatures

Induced SEY variation by external contaminants **Sub-Monolayer Contaminations**

High-Energy Range

• Low Variations

(SEY Max from 1.4 to 1.3)

• Variation Dependence on Gas contaminant

Low-Energy Range

- **Strong Variations**
- (SEY @10eV from 0.05 to 0.25)
- New characteristic structures

AIP Advances 7, 115203 (2017)

Secondary Electron Yield Variations at Cryogenic Temperatures

Sub-Monolayer Contaminations Induced SEY variation by external contaminants

- High-Energy Range • Low Variations (SEY Max from 1.4 to 1.3)
- Variation Dependence on Gas contaminant (?)

Low-Energy Range

- Strong Variations (SEY @10eV from 0.05 to 0.25)
- New characteristic structures

Secondary Electron Yield Variations at Cryogenic Temperatures

Adsorption process of Carbon Monoxide on Cu sample at 10K

Outline

SEY of Metal surfaces

• Difference between "As Received" and atomically Clean Metals

SEY variation induced by Surface modifications

- Morphology
- Defects
- Chemical state variations (interactions with photons and electrons)

SEY variation induced by Overlayers

- Coatings
- Contaminants (Low Temperature)

SEY and EDC

• Correlation between SEY and surface properties

Energy Distribution Curves at different Primary Energy

• By normalizing to 1 spectra taken with E_p - E_{bias} < W_f and than plotting together all EDC of clean oriented HOPG

HOPG

- Each system has a different SEY depending on the chemistry and morphology
- Overlayers plays a crucial role
- The overlayer thickness can induce significant variation in SEY
- Contaminant Layer thickness could be responsible of the different sectors behaviour in accelerators

Conclusions

- Studies of different systems and material
- Studies of chemistry on the surface
- Evaluation of physical properties
- Important input for computational methods

IOP Publishing

Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 31 (2019) 055901 (11pp)

https://doi.org/10.1088/1361-648X/aaf363

Secondary electron emission and yield spectra of metals from Monte Carlo simulations and experiments

Martina Azzolini^{1,2}, Marco Angelucci³, Roberto Cimino³[®], Rosanna Larciprete^{3,4}, Nicola M Pugno^{2,5,6}⁰, Simone Taioli^{1,7}⁰ and Maurizio Dapor

Thank you for your attention

15/11/2022 **Marco Angelucci - LEE2022 Marco Angelucci - LEE2022** 39

Measure of Secondary Electron Yield

Method 2 Direct measure of I_{in}

 $SEY = \delta =$

Iout

 I_{in}

Measure of Secondary Electron Yield

SEY Variation

Chemical variation induced by electron irradiation ST. ST.

SEY Variation

Three-step process:

- Production of SE at a depth z
- Transport of the SE toward the surface
- Emission of SE across the surface barrier
- SEY electrons are produced within a semi-sphere of about few nm radius

Secondary Electron Yield Reduction **NFN** Intensity (arb. un.) Intensity (arb. un.) Carbon minimum thickness energy analyser hoton source e-beam evaporation from graphite rod · X-ray tube • UV lamp Synchrotro XPS analysis (Coverage Estimation) 11111111 ,,,,,,,,,,,,,,,,,,,,,,,,,,, 960 950 940 930 920 288 286 284 282 $\overline{}$ UHV - Ultra High Vacuur $p < 10^{-7}$ mbar Cu 2p nn. Clean 18 min Intensity (arb 60 min SEY measurements 180 min 330 min Cu KLL C 1s **Contract Contract** Minimum thickness evaluation 1000 800 600 400 200 0 Binding Energy (eV)

M. Angelucci et. al; Phys. Rev. Research Rapid comm. 2, 032030(R) (2020)
Marc 15/11/2022 Marco Angelucci - LEE2022 45

Secondary Electron Yield Reduction

Carbon minimum thickness

M. Angelucci et. al; Phys. Rev. Research Rapid Comm. 2, 032030(R) (2020) 15/11/2022 Marco Angelucci - LEE2022 46

Measure Angle integrated EDC (Δ \sim 1.3 eV) with LEED Optics (Omicron) in Auger Mode with a modified electronics allowing to maintain the e-gun in LEED condition.

(necessary to go to LE)

Plotting all the data normalizing to UNITY the intensity of the EDC $@$ Ep< Wf

or

Integrating the curves: (when $Ep < 50 eV$) \triangleright 0 to E_P – Δ (True Secondary) \triangleright E_p – Δ to E_p + Δ (Elastically Back.) (when $Ep > 50 eV$) Ø 0 to 50 eV (True Secondary) 50 eV to $E_P - \Delta$ (Rediffused) $E_p - \Delta$ to $E_p + \Delta$ (Elastically Back.)

General Trend: Ar on poly-Cu

Wf Difference!